Comment résoudre une équation du second degré ?
Depuis le début de l’histoire de l'humanité, les professeurs de mathématique torturent leurs pauvres élèves sans défense à l'aide d'une méthode abominable, sorti de l'imagination des pires tyrans que le Monde n'est jamais eu à supporter : Les équations du second degré !
Un professeur de mathématiques qui parle avec emphase : Je proteste énergiquement ! Ça suffit ! Je vais être clair, rapide et concis :
Si vous êtes sur cette page, c'est que vous appartenez certainement à l'une de ces catégories, et vous avez donc besoin que je vous explique :
Comment résoudre une équation du second degré ?
Pour répondre à cette question existentielle, il convient d'abord d'apporter quelques informations...
Pour commencer
Définition d'un polynôme du second degré
Pour commencer, il faut définir ce qu'est un polynôme du second degré.
Un polygone du second degré est, selon les robots [3], l'expression numérique d'une courbe s'écrivant sous la forme y=ax²+bx+c. Comme vous pouvez le constater, aucun singe savant ne pourrait comprendre une formulation d'une telle complexité, alors un lycéen, n'en parlons pas. Il va donc être nécessaire de faire appel à quelqu'un qui sache à la fois comprendre le langage des robots et de le retranscrire dans une une langue intelligible ; c'est donc pour celà que je vais faire appel aux grands, aux magnifiques, aux exceptionnels, aux immenses, aux gigantesques, aux titanesques, aux terribles ...
Fred et Jamy ont quelque chose à t'apprendre : | |
Fred et Jamy ! |
Alors c'est pas sorcier, pouvez-vous nous expliquer simplement ce qu'est un polychrome du second degré ?
Fred et Jamy ont quelque chose à t'apprendre : | |
Vous voulez dire : "un polynôme du second degré" ? |
Oui, un polymorphe du second degré.
Fred et Jamy ont quelque chose à t'apprendre : | |
Voici donc la raison pour laquelle on a été appelé... |
Bon, si vous répondiez à ma question sur les polysocs du second degré ?
Fred et Jamy ont quelque chose à t'apprendre : | |
Il est très drôle. |
Fred et Jamy ont quelque chose à t'apprendre : | |
Bon, nous allons essayer de faire suffisamment simple pour que vous puissiez le comprendre [4], mais compte-tenu de votre niveau intellectuel proche de l’inexistence, j'ai peur que se soit au-dessus de nos capacités. Pour faire simple, nous allons illustrer : |
On dirait un V, donc ce polyomino est rapide
On dirait une aiguille, donc ce polyglotte est épineux.
On dirait l'évolution de mon niveau intellectuel, donc ce polypode est supérieur.
On dirait une montagn... Quoi ? Les polycopiés sont responsables de l'obésité ? Mais il faut absolument prévenir les hôpitaux ! Le ministère de la santé ! L'OMS ! Mon médecin [6] !
Fred et Jamy ont quelque chose à t'apprendre : | |
Là, on se barre. |
Quoi, il partent déjà ? Dommage, je comprenais leurs explications, à eux. Bon, pour la suite de l'article, je pense qu'une mise en contexte sera nécessaire.
Mise en contexte
Avant de débuter l’explication à proprement parler, il convient de mettre en place une mise en contexte, afin de ne pas perdre ceux qui sont là par hasard, et qui n'ont pas forcément besoin de savoir résoudre les équations du second degré[7]. Je vais donc vous présenter une petite mise en scène :
Un cours de mathématiques ordinaire, dans une classe tout à fait banale. Les élèves sont tous endormis sur leurs tables, tandis que leur professeur récite d'une voix monocorde le cours qu'il est le seul à écouter. Il se tourne alors vers un élève innocent.
La mise en contexte étant désormais terminée, je vais pouvoir passer au guide en lui même. Si vous n'êtes pas déjà mort.
Notes et références
- ↑ J'aurais pu rajouter soldat, mais bon... Pas envie.
- ↑ Ce n'est pas le premier, et il ne sera certainement pas le dernier.
- ↑ Ou les professeurs de mathématiques, c'est pareil. Je tiens cette information d'un professeur de SVT.
- ↑ C'est pas gagné.
- ↑ ax² pour les incultes.
- ↑ J'ai pas envie qu'il choppe cette saloperie, j'ai besoin de lui !
- ↑ Bien que je n'ai absolument aucune idée de la raison de leur présence ici.
- ↑ 4° rang ; 1° colonne ; 2° table
S'il vous a enthousiasmé, votez pour lui sur sa page de vote ! Ou pas.